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Abstract—Thermal buckling of a joined conical-conical shell
system is investigated in this research. It is assumed that the
shell is made of functionally graded materials (FGMs) whose
thermomechanical properties vary continuously through the
thickness direction. Thickness of both shells are equal. First
order theory of shells is accompanied with the Donnell type
of kinematic assumptions to establish the general equilibrium
equations and associated boundary and continuity conditions with
the aid of virtual displacement principle. The resulting system
of equations are discreted using the semi-analytical generalized
differential quadrature method (GDQM). Considering clamped
and simply supported types of boundary conditions for the
shell ends and intersection continuity conditions, an eigenvalue
problem is established to examine the critical temperature as well
as the associated mode shapes. After proving the efficiency and
validity of the present method for the case of single FGM conical
shell, some parametric studies are carried out for joined shells
made of the FGMs.

I. INTRODUCTION

Stability investigation of thin conical shells have vast appli-
cations in different fields of engineering. With the introduction
of functionally graded materials (FGMs), recent researches
on thermal stability of conical shells are focused on those
made of FGMs. Bhangale et al. [1] applied a semi-analytical
finite element method to the thermal buckling of conical
shells using the first-order shell theory. The shell is divided
into many sub-layers through the thickness direction where
each of them is assumed to be isotropic and homogeneous.
Prebuckling deformations of the shell are obtained employing
the linear bending deformation assumptions. Akbari et al.
[2] used the generalized differential quadrature method to
investigate the thermal buckling of FGM conical shell with
arbitrary edge supports. Classical shell theory is used and
Prebuckling deformations of the shell are obtained using the
linear membrane approach. There is no result on the thermal
buckling of joined conical shells in the open literature. The
present study deals with such subject for joined shells made
of FGMs using the first order shell theory.

II. GOVERNING EQUATIONS

Consider a joined circular conical-conical shell made of
FGMs of uniform thickness h, end radii R1, R3, intersection
radius R2, slanted lengths L1 and L2, and vertex half angles
α1 and α2. Meridional, circumferential, and normal directions
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Fig. 1. Geometric parameters and coordinate system sign of a joined conical-
conical closed shell.

of each conical shell are denoted by 0 ≤ xi ≤ Li, i = 1, 2,
0 ≤ θ ≤ 2π and −h/2 ≤ z ≤ +h/2, respectively. The adopted
coordinates system (xi, θ, z), geometric characteristics, and
sign convention of the joined shell are depicted in Fig. (1).
Mechanical properties of the FGM shell should be obtained
according to a homogenization technique, e.g. Voigt rule of
mixture. In this study we assume that segments consist of the
same constituents and the properties dispersion is the same for
both segments. Each property of the shell may be expressed
as

P (z, T ) = Pc(T )Vc(z) + Pm(T )Vm(z) (1)

where P describes any properties of the shell and the sub-
scripts m and c represent the properties of metal and ceramic
constituents, respectively, and V indicates the volume fraction.
Following Akbari et al. [3], a power law function may be used
to represent the volume fractions of ceramic and metal through
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the thickness such that

Vc =

(
1

2
+

z

h

)k

, Vm = 1− Vc (2)

where in the above equation, k is the power law index and
dictates the distribution of material properties through the
thickness. Material properties, as seen in Eq. (1), are assumed
to be temperature dependent. Temperature dependency of
the FGM constituents are frequently expressed based on the
Touloukian formula [2] in which higher order dependency to
the temperature is also included. Accordingly, each property
of the metal or ceramic may be written in the form

P (T ) = P0(P−1T
−1 + 1 + P1T + P2T

2 + P3T
3) (3)

Based on the first order shear deformation theory (FSDT) of
shells, components of the displacement on a generic point may
be represented according to the mid-surface characteristics
such that

ui
(
xi, θ, z

)
= ui

(
xi, θ

)
+ zφi

x

(
xi, θ

)
vi

(
xi, θ, z

)
= vi

(
xi, θ

)
+ zφi

θ

(
xi, θ

)
wi

(
xi, θ, z

)
= wi

(
xi, θ

)
(4)

In the above equation u, v, and w are the meridional, cir-
cumferential, and through-the-thickness displacements, respec-
tively. Here, u, v, and w are the meridional, circumferential,
and through-the-thickness displacements of the mid-surface,
respectively. Besides, φθ and φx are, respectively, the trans-
verse normal rotations about the x and θ axes. Furthermore,
herein and in all the rest, superscript i takes the values of 1 and
2 and is associated with the ith. shell segment. According to
FSDT, the components of strain field on an arbitrary point of
the conical shell may be obtained in terms of those belong
to the mid-surface of the shell and change of curvatures.
Consequently, one may write [3]


εixx
εiθθ
γi
xθ

γi
xz

γi
θz

 =


εixx
εiθθ
γi
xθ

γi
xz

γi
θz

+ z


κi
xx

κi
θθ

κi
xθ

κi
xz

κi
θz

 (5)

where the components of the strain associated with the mid-
surface of the shell are [4]

εixx = ui
,xi +

1

2

(
wi

,xi

)2

εiθθ =
vi,θ
r(xi)

+
cos(αi)

r(xi)
wi +

sin(αi)

r(xi)
ui +

1

2r2(xi)

(
wi

,θ

)2
γi
xθ =

ui
,θ

r(xi)
+ vi,xi −

sin(αi)

r(xi)
vi +

1

r(xi)
wi

,xiwi
,θ

γi
xz = wi

,xi + φi
x

γi
θz =

wi
,θ

r(xi)
− cos (αi)

r (xi)
vi + φi

θ (6)

and the components of change in curvature in the Donnell
sense compatible with the FSDT are [4]

κi
xx = φi

x,xi

κi
θθ =

φi
θ,θ

r(xi)
+

sin(αi)

r(xi)
φi
x

κi
xθ =

φi
x,θ

r(xi)
+ φi

θ,xi −
sin(αi)

r(xi)
φi
θ

κi
xz = 0

κi
θz = 0 (7)

where in the above equations (),xi and (),θ denote the
derivatives with respect to the meridian and circumferential
directions of the shell, respectively. Furthermore, r

(
xi
)

=
Ri+xi sin (αi) stands for the radius of the joined shell at each
point along the length. For the case when material properties
of the shell are linearly elastic, components of stress in terms
of strains are evaluated as

σi
xx = Q11ε

i
xx +Q12ε

i
θθ − (T − T0)α

σi
θθ = Q12ε

i
xx +Q22ε

i
θθ − (T − T0)α

τ iθz = Q44γ
i
θz

τ ixz = Q55γ
i
xz

τ ixθ = Q66γ
i
xθ (8)

where Qij’s (i, j = 1, 2, 4, 5, 6) are the reduced material
stiffness coefficients and are obtained as follow

Q11 = Q22 =
E(z)

1− ν2(z)
, Q12 =

ν(z)E(z)

1− ν2(z)

Q44 = Q55 = Q66 =
E(z)

2(1 + ν(z))
(9)

The components of stress resultants are obtained using the
components of stress field as N i

xx

N i
θθ

N i
xθ

 =

∫ +h/2

−h/2

 σi
xx

σi
θθ

τ ixθ

 dz, M i
xx

M i
θθ

M i
xθ

 =

∫ +h/2

−h/2

z

 σi
xx

σi
θθ

τ ixθ

 dz,

{
Qi

xz

Qi
θz

}
=

∫ +h/2

−h/2

{
σi
xz

σi
θz

}
dz (10)

Substitution of Eq. (8) into Eq. (10) with the simultaneous aid
of Eqs. (5), (6), and (7) generates the stress resultants in terms
of the mid-surface characteristics of the shell as

N i
xx = A11ε

i
xx +A12ε

i
θθ +B11κ

i
xx +B12κ

i
θθ −NT

N i
θθ = A12ε

i
xx +A22ε

i
θθ +B12κ

i
xx +B22κ

i
θθ −NT

N i
xθ = A66γ

i
xθ +B66κ

i
xθ

M i
xx = B11ε

i
xx +B12ε

i
θθ +D11κ

i
xx +D12κ

i
θθ −MT

M i
θθ = B12ε

i
xx +B22ε

i
θθ +D12κ

i
xx +D22κ

i
θθ −MT

M i
xθ = B66γ

i
xθ +D66κ

i
xθ

Qi
θz = A44γ

i
θz

Qi
xz = A55γ

i
xz (11)
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In the above equation, the constant coefficients Aij , Bij , and
Dij indicate the stretching, bending-stretching, and bending
stiffnesses, respectively, which are calculated by

(Aij , Bij , Dij) =

∫ +0.5h

−0.5h

(Qij , zQij , z
2Qij)dz (12)

Besides, NT and MT are the thermal force and thermal
moment resultants, which are given by

NT =

∫ +0.5h

−0.5h

1

1− ν(z, T )
E(z, T )α(z, T )(T − T0)dz

MT =

∫ +0.5h

−0.5h

z

1− ν(z, T )
E(z, T )α(z, T )(T − T0)dz (13)

The complete set of nonlinear equilibrium equations and the
associated boundary conditions may be obtained with the aid
of static version of virtual displacements. For a conical shell
that is subjected to pure thermal loading, the total energy of
the shell in an equilibrium position takes the form

δU i =

∫ Li

0

∫ 2π

0

∫ +h/2

−h/2

(σi
xxδε

i
xx + σi

θθδε
i
θθ

+τ ixθδγ
i
xθ + τ ixzδγ

i
xz + τ iθzδγ

i
θz

)
r(xi)dzdθdxi (14)

Integrating the above expression with respect to z and per-
forming the Green-Guass theorem to relieve the virtual dis-
placement gradients results in the expressions for the nonlinear
equilibrium equations of the FGM conical shell as

N i
xx,xi +

N i
xθ,θ

r(xi)
+

sin(αi)

r(xi)
(N i

xx −N i
θθ) = 0

N i
θθ,θ

r(xi)
+N i

xθ,xi + 2
sin(αi)

r(xi)
N i

xθ +
cos (αi)

r (xi)
Qi

θz = 0

Qi
xz,xi +

1

r (xi)
Qi

θz,θ +
sin (αi)

r (xi)
Qi

xz −
cos (αi)

r (xi)
N i

θθ

− 1

r(xi)

(
r(xi)N i

xxw
i
,xi +N i

xθw
i
,θ

)
,xi

− 1

r(xi)

(
1

r(xi)
N i

θθw
i
,θ +N i

xθw
i
,xi

)
,θ

= 0

M i
xx,xi +

1

r (xi)
M i

xθ,θ +
sin (αi)

r (xi)

(
M i

xx −M i
θθ

)
−Qi

xz = 0

M i
xθ,xi +

1

r (xi)
M i

θθ,θ +
2 sin (αi)

r (xi)
M i

xθ −Qi
θz = 0 (15)

The complete set of boundary conditions for each side of the
shell may be written as

N i
xxδu

i = 0

N i
xθδv

i = 0(
Qi

xz +N i
xxw

i
,xi +

1

r(xi)
N i

xθw
i
,θ

)
δwi = 0

M i
xxδφ

i
x = 0

M i
xθδφ

i
θ = 0 (16)

III. PREBUCKLING SOLUTION, LINEAR MEMBRANE
APPROACH

Linear membrane approach is used to find the prebuckling
forces. In this approach, the von-Karman improvements as

well as bending moments and curvatures are excluded from
Eqs. (15) and (16). Therefore, the pre-buckling deformations
of shell are obtained via the solution of the following equations
[2]

N i
xx,xi +

sin(αi)

r(xi)
(N i

xx −N i
θθ) = 0

cos(αi)

r(xi)
N i

θθ = 0 (17)

along with the next boundary conditions [2]

N i
xxδu

i = 0 (18)

in which

N i
xx = A11u

i
,xi +A12

(
cos(αi)

r(xi)
wi +

sin(αi)

r(xi)
ui

)
−NT

N i
θθ = A12u

i
,xi +A22

(
cos(αi)

r(xi)
wi +

sin(αi)

r(xi)
ui

)
−NT

(19)

The linear membrane pre-buckling solution may be used
effectively for moderately long shells, where the effect of edge
zone function near the edges of the shell is not dominant. In
this research, this simple approach is employed to obtain the
pre-buckling deformations. Based on the second of equilibrium
equations (17), the circumferential stress resultant in pre-
buckling state is equal to zero

N i
θθ0 = 0 (20)

Here, a subscript ’0’ indicates the pre-buckling characteristics.
With the aid of the above equation and referring to the basic
strain-displacement relations (19), the lateral deflection of the
shell in pre-buckling state takes the form

wi
0 =

r(xi)

A22 cos(αi)

(
NT −A12u

i
0,xi −

A22 sin(αi)

r(xi)
ui
0

)
(21)

Solution of the first equilibrium equation (17) in conjunction
with Eq. (20) yields

N i
xx0 =

C1

r(xi)
(22)

After expanding the above expression in terms of ui
0 and wi

0
and usage of Eq. (21), a first order differential equation in
terms of ui

0 is obtained. Under the exact solution of such
equation along with the immovability conditions ui

0(0) =
ui
0(L2) = 0 (associated with Eq. (18)) one obtains the axial

compressive force of the shell as

N i
xx0 =

(A12 −A22) sin(αi)Li

A22r(xi) ln (1 + Li sin(αi)/Ri)
NT (23)

IV. STABILITY EQUATIONS

Linearized stability equations are obtained by the concept
of adjacent equilibrium criterion. According to this criterion,
which is based on the perturbation technique, the components
of displacements on primary equilibrium path are perturbed
infinitesimally to establish an adjacent equilibrium position.
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Therefore, displacement components associated with the sec-
ondary equilibrium path are

ui(x, θ)
vi(x, θ)
wi(x, θ)
φi
x(x, θ)

φi
θ(x, θ)

 =


ui
0(x)

vi0(x)
wi

0(x)
φi
x0(x, θ)

φi
θ0(x, θ)

+


ui
1(x, θ)

vi1(x, θ)
wi

1(x, θ)
φi
x1(x, θ)

φi
θ1(x, θ)

 (24)

where displacement components with subscript 1 are infinites-
imal and nonzero displacements. After substitution of the
above equation into Eq. (11), the incremental values of stress
resultants are obtained. Since the incremental displacements
are small enough, stability equations associated with the equi-
librium equations (15) are as follow

N i
xx1,xi +

N i
xθ1,θ

r(xi)
+

sin(αi)

r(xi)
(N i

xx1 −N i
θθ1) = 0

N i
θθ1,θ

r(xi)
+N i

xθ1,xi + 2
sin(αi)

r(xi)
N i

xθ1 +
cos (αi)

r (xi)
Qi

θz1 = 0

Qi
xz1,xi +

1

r (xi)
Qi

θz1,θ +
sin (αi)

r (xi)
Qi

xz1 −
cos (αi)

r (xi)
N i

θθ1

− 1

r(xi)

(
r(xi)N i

xx0w
i
1,xi +N i

xθ0w
i
1,θ

)
,xi

− 1

r(xi)

(
1

r(xi)
N i

θθ0w
i
1,θ +N i

xθ0w
i
1,xi

)
,θ

= 0

M i
xx1,xi +

1

r (xi)
M i

xθ1,θ +
sin (αi)

r (xi)

(
M i

xx1 −M i
θθ1

)
−Qi

xz1 = 0

M i
xθ1,xi +

1

r (xi)
M i

θθ1,θ +
2 sin (αi)

r (xi)
M i

xθ1 −Qi
θz1 = 0 (25)

Using (16) the complete set of incremental boundary condi-
tions for each side of the shell take the form

N i
xx1δu

i
1 = 0

N i
xθ1δv

i
1 = 0(

Qi
xz1 +N i

xx0w
i
1,xi +

1

r(xi)
N i

xθ0w
i
1,θ

)
δwi

1 = 0

M i
xx1δφ

i
x1 = 0

M i
xθδφ

i
θ1 = 0 (26)

For the two ends of the conical shell, various types of boundary
conditions may be defined. In this study each of the edges
x1 = 0 and x2 = L2 may be clamped (C) or simply supported
(S).

C : ui
1 = vi1 = wi

1 = φi
x1 = φi

θ1 = 0

S : ui
1 = vi1 = wi

1 = M i
xx1 = φi

θ1 = 0 (27)

At the intersection of the shell system, the continuity of
displacement components as well as the force and moment
resultants should be satisfied. The compatibility of the dis-
placements at the intersection reads

u1
1 cos(α1)− w1

1 sin(α1) = u2
1 cos(α2)− w2

1 sin(α2)

u1
1 sin(α1) + w1

1 cos(α1) = u2
1 sin(α2) + w2

1 cos(α2)

v11 = v21
φ1
x1 = φ2

x1

φ1
θ1 = φ2

θ1 (28)

and similarly the compatibility of the stress resultants at the
intersection results is

N1
xx1 cos(α1)−Q1

xz1 sin(α1) = N2
xx1 cos(α2)−Q2

xz1 sin(α2)

N1
xx1 sin(α1) +Q1

xz1 cos(α1) = N2
xx1 sin(α2) +Q2

xz1 cos(α2)

M1
xx1 = M2

xx1

N1
xθ1 = N2

xθ1

M1
xθ1 = M2

xθ1 (29)

V. SOLUTION PROCEDURE

The stability equations (25) and boundary conditions (27)
may be expressed in terms of the incremental displacements
u1, v1, w1, φx1 and φθ1. To this end, linearized expansion of
stress resultant in terms of displacements from Eq. (11) should
be settled into Eqs. (25) and (27). Referring to the definition of
normal force and bending moment resultants from Eq. (11) and
the motion equations (15), the following separation of variables
exactly satisfies the periodicity conditions of the field variables
and is also compatible with the motion equations (11) and
matching conditions (28) and (29).

ui
1(x

i, θ) = sin(nθ)U i(xi)

vi1(x
i, θ) = cos(nθ)V i(xi)

wi
1(x

i, θ) = sin(nθ)W i(xi)

φi
x1(x

i, θ) = sin(nθ)Φi
x(x

i)

φi
θ1(x

i, θ) = cos(nθ)Φi
θ(x

i) (30)

where in the above equation n is the wave number through the
circumferential direction. Substitution of the above equation
into the stability equations (25) results into new ten coupled or-
dinary differential equations in terms of the unknown through-
the-meridian functions U i(xi), V i(xi),W i(xi),Φi

x(x
i) and

Φi
θ(x

i). The transformed equations and the associated bound-
ary conditions for the i-th. segment are given here (for the sake
of simplicity, the superscript i is dropped out). The stability
equation in axial direction is

A11U,xx +
A12

r (x)
(sin (α)U,x − nV,x + cos (α)W,x)+

B11Φx,xx +
B12

r (x)
(sin (α)Φx,x − nΦθ,x)−

B12 sin (α)

r2 (x)
(sin (α)Φx − nΦθ)+

A66

r2 (x)

(
−n2U + n sin (α)V − nr (x)V,x

)
+

B66

r2 (x)

(
−n2Φx + n sin (α)Φθ − nr (x)Φθ,x

)
+

(A11 −A12)

r (x)
sin (α)U,x−

A22 sin (α)

r2 (x)
(sin (α)U − nV + cos (α)W )+

(B11 −B12) sin (α)

r (x)
Φx,x+

(B12 −B22) sin (α)

r2 (x)
(sin (α)Φx − nΦθ) = 0 (31)
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The stability equation in circumferential direction is

A12

r (x)
nU,x +

A22

r2 (x)

(
nU sin (α)− n2V + n cos (α)W

)
+

B12

r (x)
nΦx,x +

B22

r2 (x)

(
n sin (α)Φx − n2Φθ

)
+

A66 sin (α)

r2 (x)
(nU − sin (α)V + r (x)V,x)+

B66 sin (α)

r2 (x)
(nΦx − sin (α) Φθ + r (x)Φθ,x)+

A66

r (x)
(nU,x + r (x)V,xx) +

B66

r (x)
(nΦx,x + r (x)Φθ,xx)+

A44 cos (α)

r2 (x)
(− cos (α)V + r (x)Φθ + nW ) = 0 (32)

The stability equation in transverse direction is

−A12 cos (α)

r (x)
U,x−

A22 cos (α)

r2 (x)
(sin (α)U − nV + cos (α)W )−

B12

r (x)
cos (α)Φx,x − B22 cos (α)

r2 (x)
(sin (α) Φx − nΦθ)+

A55 sin (α)

r (x)
(Φx +W,x) + κA55 (Φx,x +W,xx)+

A44

r2 (x)

(
n cos (α)V − nr (x)Φθ − n2W

)
−

(A12 −A22) sin (α)LN
T

A22 ln (1 + L sin (α) /R1)
W,xx = 0 (33)

The stability equation of moment resultants about axial direc-
tion is

B11U,xx +
B12

r (x)
(sin (α)U,x − nV,x + cos (α)W,x)+

D11Φ,xx +
D12

r (x)
(sin (α)Φx,x − nΦθ,x)−

D12 sin (α)

r2 (x)
(sin (α)Φx − nΦθ)+

B66

r2 (x)

(
−n2U + n sin (α)V − nr (x)V,x

)
+

D66

r2 (x)

(
−n2Φx + n sin (α)Φθ − nr (x) Φθ,x

)
+

(B11 −B12) sin (α)

r (x)
U,x−

B22 sin (α)

r2 (x)
(sin (α)U − nV + cos (α)W )+

(D11 −D12) sin (α)

r (x)
Φx,x+

(D12 −D22) sin (α)

r2 (x)
(sin (α)Φx − nΦθ)−

A55 (Φx +W,x) = 0 (34)

The stability equation of moment resultants about circumfer-
ential direction is

B66

r (x)
(nU,x + r (x)V,xx) +

D66

r (x)
(nΦx,x + r (x)Φθ,xx)+

B12

r (x)
nU,x +

B22

r2 (x)

(
n sin (α)U − n2V + n cos (α)W

)
+

D12

r (x)
nΦx,x +

D22

r2 (x)

(
n sin (α)Φx − n2Φθ

)
+

B66 sin (α)

r2(x)
(nU − sin (α)V + r (x)V,x)+

D66 sin (α)

r2 (x)
(nΦx − sin (α)Φθ + r (x)Φθ,x)−

A44

r (x)
(−V cos (α) + r (x)Φθ + nW ) = 0 (35)

Similarly, one should interpret the boundary conditions (27)
with the aid of variable change (30). While the transformation
of essential boundary conditions is straightforward, the natural
type of boundary conditions after change of variables (30) take
the following form

Nxx = A11U,x +
A12

r (x)
(sin (α)U − nV + cos (α)W )+

B11Φx,x +
B12

r (x)
(sin (α)Φx − nΦθ)

Nxθ =
A66

r (x)
(nU − sin (α)V + r (x)V,x)+

B66

r (x)
(nΦx − sin (α)Φθ + r (x)Φθ,x)

Mxx = B11U,x +
B12

r (x)
(sin (α)U − nV + cos (α)W )+

D11Φx,x +
D12

r (x)
(sin (α)Φx − nΦθ)

Mxθ =
B66

r (x)
(nU − sin (α)V + r (x)V,x)+

D66

r (x)
(nΦx − sin (α)Φθ + r (x)Φθ,x)

Qxz = A55 (Φx +W,x) (36)

As expected, Eqs. (31) to (35) along with a proper choice
of boundary and matching conditions results in a system of
homogeneous equations. To solve the system of equations as
an eigenvalue problem, the GDQ method is implemented to
transform the ordinary differential equations (31)-(35) into a
new linear algebraic equations. The GDQ method is quietly
well-known and its details are not repeated herein. Meanwhile
one may refer to [5] for more details.

VI. NUMERICAL RESULT AND DISCUSSION

1) Comparison studies: In this section, the critical buckling
temperature Tcr(

◦C) of a class of conical shell made of
SUS304 and Al2O3 is evaluated and compared with the
results of Bhangale et al. [1] in Table I. Thermomechanical
properties of both of the constituents are highly temperature
dependent. Temperature-dependent coefficients for SUS304
and Al2O3 are given in reference [2].
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TABLE I. Tcr[oC] OF TEMPERATURE DEPENDENT Al2O3/SUS304
C − C FGM CONICAL SHELLS. PROPERTIES OF THE SHELL ARE

L/h = 304.7896.

k α = 15o, R1/h = 252.5573
Bhangale et al. [1] Present

0.0 151.11 151.2 (−0.07%)
0.5 183.25 181.29 (1.07%)
1.0 202.89 199.47 (1.69%)
5.0 254.20 250.06 (1.63%)
10.0 270.86 267.24 (1.34%)
15.0 278.18 274.79 (1.22%)
100 294.95 290.90 (1.37%)
1000 296.35 293.00 (1.13%)
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Fig. 2. Infuluence of semi vertex angle of second shell on critical buckling
temperature difference of conical shells.

2) Parametric studies: In this section, a ceramic-metal
FGM conical shell made of SUS304 and Si3N4 is considered.
Thermomechanical properties of both of the constituents are
highly temperature dependent. Temperature-dependent coeffi-
cients for SUS304 and Si3N4 are available in reference [2].
The critical buckling temperature difference of conical shells
versus α2 for different values of α1 is shown in Fig. 2. It can be
observed that where the two angles of the shell becomes equal,
a sudden drop is occurred in the critical buckling temperature.
The critical buckling temperature difference of conical shells
versus L2/h for different values of α2 is illustrated in Fig. 3.
It can be observed that critical buckling temperature difference
decreases when L2/h increases. Influence of power law index
on critical buckling temperature difference of conical shell for
different values of α2 is illustrated in Fig. 4. It can be observed
that critical buckling temperature difference decreases when
power law index increases. Influence of edge support on the
mode shape of conical shells are illustrated in Fig. 5.

VII. CONCLUSION

Linear thermal buckling of a joined conical shell made of
functionally graded materials is investigated in this study. The
shell is formulated using the Donnell kinematic assumptions
accounting for the von-Karman type of geometrical nonlin-
earity. Material properties of the shell are obtained according
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Fig. 3. Influence of length of second shell on critical buckling temperature
difference of conical shells.
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Fig. 4. Influence of length of second shell on critical buckling temperature
difference of conical shells.

to a power law expression and temperature dependency is
regarded. Linear membrane Prebuckling approach is used.
These equations are solved via a hybrid Fourier-GDQ method.
It is shown that the critical buckling temperature of conical
shells decreases permanently with the increase in shell length
and power law index. Also, it is illustrated that when the semi
vertex angle of two shells are approaching to a same value,
the critical temperature difference decreases abruptly.
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