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Abstract—The primary objective of this paper was the 
development of a simple method for testing 21 forms of geometric 
error associated with three-axis machine tools. To avoid Abbe’s error, 
measurement devices must be placed along an ideal motion line when 
measuring geometric error. This results in a number of practical 
measurement difficulties, which necessitate the establishment a new 
measurement methods incorporating a geometric error model 
configured specifically to the location of the measurement device. 

This paper introduces the principles and practical applications 
of a simple testing method using common measurement devices such 
as indicators or probes, gauge blocks, and straight gauges to measure 
21 forms of geometric error. The results of this measurement can be 
used to provide error compensation for three-axis machine tools. We 
applied the traditional method of HTM to deduce a geometric error 
model for three-axis machine tools and simplified this model to a 
kinematic parameter-independent model. Finally, based on the new 
measurement method and compensation system corresponding to this 
error model, we established a truly simple and practical compensation 
technique providing increased accuracy for three-axis machine tools. 

Keywords—three-axis machine tool; geometric error; HTM; 
error compensatio; 

I.  INTRODUCTION 

Enhancing the accuracy of CNC machine tools is a 
crucial step in the development of this technology. Errors that 
detract from the accuracy of machine tools can be divided into 
three categories: structurally-induced errors, driver-induced 
errors, and quasi-static errors. According to the literature, 
quasi-static error, including both geometric and thermal error, 
accounts for 70 % of the error in CNC machine machining.  

In 2008, a total volumetric compensation was introduced 
by Siemens in the 840D controller [1] and Heidenhain  
proposed the iTNC 530 in 2009 [2]. These functions increase 
the accuracy of machining, as long as volumetric errors were 
initially determined using suitable measurement technology.  

This paper examined geometric error in quasi-static 
situations. The development of geometric error models for 
machine tools has been well developed over the past few years 
[3–7]. These models describe error in the position and 
orientation of tools relative to the workpiece in specific 
positions, whereby factors detracting from accuracy are the 
result of kinematic link parameters and individual sources of 
error. It is well understood that a lack of accuracy in the 
motion along a linearly driven axis is associated with six 

forms of motional error, including one form of linear error, 
two of straightness, and three rotational.  

With modern measurement devices such as the 6D laser 
interferometer [8], all six forms of motional error can be 
measured rapidly. The LaserTRACER [9] offers an efficient, 
high-precision measurement system for volumetric calibration, 
but this measurement system is very expensive. The accuracy 
of three-axis machine tools can be dramatically improved 
through error compensation based on an error model 
[8,10~12]. 

Currently, geometric error modeling depends on a three-
axis machine kinematic chain to create a geometric error 
model, the home position of which is regarded as the reference 
coordinate for motion along that axis. For this reason 
kinematic parameters between the coordinate systems of linear 
axes are needed to describe their relationship to motion. 
However, ideal axis lines and the center of revolution of the 
linear motion slide is difficult to define precisely making it 
impossible to define kinematic parameters. Furthermore, 
geometric error defined by the ideal axis line of linear motion 
slides must be measured by placing the measurement device 
on this axis line to avoid Abbe’s error. This creates practical 
measurement difficulties when the linear motion slide is at a 
high position or when there is interference. Overall error is at 
the tool end of geometric error model with kinematic 
parameters constructed according to a machine reference 
coordinate system. In actual machining, however, a certain 
point on the workpiece will be set as the origin of the 
workpiece coordinate system, which will be the error-free 
position. Error is thus determined according to this point 
rather than to the machine reference coordinate system. 

For this reason, current methods for measuring error and 
creating models are limited by the following three practical 
issues: 

(1) Kinematic parameters in the model cannot be accurately 
determined. 

(2) Avoiding Abbe’s error during the measurement of 
geometric error creates practical operational difficulties 
with conventional measurement devices. 

(3) Error models including kinematic parameters contribute 
rotational error to overall error: inaccuracy in the 
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measurement of rotational error magnifies the uncertainty 
related to the accuracy of machine tools. 

Therefore, it is necessary to establish more practical, 
convenient, and accurate methods of measurement and new 
error models for geometric error related to three-axis machine 
tools.   

II. THE PRINCIPLE OF LOCATION-DEPENDENT ERROR 

MEASUREMENT  

The linear axis of three-axis machine tools was structured 
according to kinematic stacking with each axis of motion 
provided a home position. For this reason, kinematic 
parameters between linear axis coordinate systems are 
necessary to describe their movement relative to one another. 
However, in practice, the location of the ideal motion axis line 
for a linear motion slide is difficult to clearly define. For this 
reason, it is necessary to establish a new measurement method 
and a geometric error model based on measurement location. 

Ideally, coordinate systems for geometric error models 
should be established along the axis line related to the ideal 
motion of the linear slide to describe the spatial error caused 
by Abbe’s error. For example, measurement of the Y linear 
slide, displayed in Fig. 1, has three translational errors (EXY, 
EYY and EZY) and three rotational errors (EAY, EBY and ECY). 
If, when measuring geometric error for directions x,y,z 
between measurement axis line (D) and ideal motion axis line 
(I) each have offset Lx, Ly, Lz, then the 6D component errors 
(EXYd , EYYd , EZYd , EAYd , EBYd , ECYd ) for this 
measurement method and the results of the measurement are: 

EXYd = EXY+Lx* (1-cos(EBY))+Lx* (1-cos(ECY))+Ly* 

sin(ECY)+Lz* sin(EBY)                                           (1) 

EYYd = EYY+Lx* sin(ECY)+Ly* (1-cos(EAY))+Ly* (1-
cos(ECY))+Lz* sin(EAY)                                         (2) 

EZYd = EZY+Lx* sin(EBY)+Ly* sin(EAY)+Lz* (1-cos(EAY))   
+Lz* (1-cos(EBY))                                                   (3) 

 EAYd = EAY  

 EBYd = EBY  

 ECYd = ECY  

As indicated in the above explanation, when measuring 
rotational error (EAY, EBY and ECY), the measurement line is 
independent of the location of the measurement device; 
therefore, it is not necessary for the measurement device to be 
located on the ideal motion line I. However, when measuring 
translational error (EXY, EYY and EZY), the location of 
measurement matters; therefore, the measurement device must 
be placed on the ideal motion line I. If it is placed on line D in 
Fig. 1, then the spatial error created by rotational error will be 
included in the translational error. This method of 
measurement includes rotational error in addition to its own 
translational error. Therefore, the overall error 

),,( ddd ZYX  along the measurement line D with small-

angle approximation assumptions can be expressed as follows: 

 dX  = EXYd = EXY+Ly* ECY+Lz* EBY  

 dY  = EYYd = EYY+Lx* ECY+Lz* EAY  

 dZ  = EZYd = EZY+Lx* EBY+Ly* EAY    

 

Fig. 1. Location-dependent error measurement along linear axis 

Additionally, when constructing this measurement of 
geometric error, the kinematic parameters for Lx, Ly, and Lz 
have a constant value. When the linear motion axis is moved 
to position mY , the spatial error created by the rotational error 

at that position (EAY, EBY, and ECY) will each be added to the 
translational error (EXY, EYY, and EZY) and the measurement 
line for this measurement device can be considered the ideal 
motion line for the linear motion axis, meaning that rotational 
error includes no spatial error for any position along this 
measurement line. Because the error gain of rotational errors 
is 0, the location of measurement is the initial location of 
rotational error. Furthermore, in actual cutting and measuring, 
a location on the workpiece will be specified as the origin of 
the workpiece coordinate system. Set up as an error-free 
location, all location error on the workpiece is no longer 
considered error with respect to the geometric error model 
constructed for the ideal motion line of the machine, rather it 
is considered error with respect to this point. For this reason, 
this measurement method has practical application value. 

The figure also shows the change in the actual position of 
the tool as it moves along the other two machine motion axes 
under three-axis machine tools, such that the position of the 
tool is no longer where it was when it was measured by the 
measurement device. At this point, the X and Z positions of 
three-axis machine tools have reached positions xW  and zW . 

That is, as X and Z move to the actual cutting positions mX  

and mZ  on the workpiece, and the overall error 

),,( ttt ZYX   at the tool tip, according to the measurement 

)( ttt ΔZ,ΔY,ΔX

)( ddd ΔZ,ΔY,ΔX
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devices designed to measure geometric errors using 
measurement axis line (D), can be expressed as follows: 

 ),( mmt ZXX  =  EXYd +Wz*EBYd  

 ),( mmt ZXY  =  EYYd +Wx* ECYd +Wz* EAYd  

 ),( mmt ZXZ  =  EZYd +Wx* EBYd  

where mX  and mZ  are the servo-controlled position of the X 

and Z servo-axis, respectively. 

III. LOCATION-DEPENDENT MEASUREMENT OF 

TRANSLATIONAL AND ROTATIONAL ERROR  

Existing measurement tools are already capable of 
measuring six types of geometric component error (three 
translational and three rotational) [6] in a linear motion slide. 
The main purpose of this section is to apply the principle of 
measurement described earlier to a few commonly used 
measurement devices, such as straight gauges, gauge 
blocks, and indicators (or probes), for application in a three-
axis machine tool. Combined with methods for measuring 
location related error, the six component errors were measured 
along the linear axes of a three-axis machine tool. The location, 
as measured in a perpendicular direction (X-axis of Fig. 1), 
along such a linear  axis (Y-axis in Fig. 1) can be regarded as 
an error-free reference location. In the following, 
measurement of the linear Y-axis is used to illustrate the 
method of measuring geometric error along linear axes.   

A.  Measurement of Positioning Error (EYYd ) 

The measurement devices are set up as in Fig. 2, 
according to (8) when positioning error is measured along the 
linear Y-axis slide, following the corresponding steps of 
measurement described below:  
Step 1: Install a high-precision indicator or probe along the 

axis of linear motion. 
Step 2: Place a high-precision gauge block on the machine 

platform. 
Step 3: Use the high-precision indicator or probe to ensure that 

the linear movement remains parallel to the reference 
plane of the gauge block. 

Step 4: Position the first measuring plane of the gauge block 
close to the home position of the linear motion axis, 
and set the positioning error (EYYd ) along the linear 
axes at this position to 0. 

Step 5: Use an NC program to automatically measure error at 
each position of the gauge block, such that the 
indicator or probe automatically records the 
measurement and compares the results to the readings 
on the optical scale from the linear motion axis to 
check for geometric errors. 

Step 6: The results measuring geometric error at these 
positions are set as positioning error (EYYd ) along the 
linear axis in this setup (status of the gauge block when 
the three-axis machine tools is at such an X-axis location).  

 

Fig. 2.  Positioning error measurement 

B. Measurement of Horizontal Straightness Error (EXYd) 

The measurement devices are set up as in Fig. 3, 
according to (7) when positioning error is measured along the 
linear Y-axis slide, following the corresponding steps of 
measurement described below:  
Step 1: Install a high-precision indicator or probe along the 

axis of linear motion. 
Step 2: Place a high-precision straight gauge on the machine 

platform. 
Step 3: Use the high-precision indicator or probe to ensure that 

the reference surface of the straight gauge remains 
parallel to the ideal correction of the axis of movement.  

Step 4: Return the linear motion axis to the home position, and 
set the horizontal straightness error (EXYd) along the 
linear axes at this position to 0.  

Step 5: Use an NC program to automatically measure 
horizontal straightness error at each position along the 
linear motion axis, such that the indicator or probe 
automatically records the measurements.  

Step 6: The measurement results are horizontal straightness 
error (EXYd ) along the linear axis in this setup. 

 

Fig. 3.  Measurement of horizontal straightness error 

dd EYYΔY 

dd EXYΔX 
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C.  Measurement of vertical straightness error (EZYd) 

The measurement devices are set up as in Fig. 4, 
according to (9) when positioning error is measured along the 
linear Y-axis slide, following the corresponding steps of 
measurement described below:  

Step 1: Install a high-precision indicator or probe along the 
axis of linear motion. 

Step 2: Place a high-precision straight gauge on the machine 
platform. 

Step 3: Use the high-precision indicator or probe to ensure that 
the reference surface of the straight gauge remains 
parallel to the ideal correction of the movement axis.  

Step 4: Return the linear motion axis to the home position, and 
set the horizontal straightness error (EZYd) along the 
linear axes at this position to 0.  

Step 5: Use an NC program to automatically measure vertical 
straightness error at each position of linear motion, 
such that the indicator or probe automatically records 
the measurements.  

Step 6: The measurement results are the vertical straightness 
error (EZYd) along the linear axis in this setup. 

 

Fig. 4.  Measurement of vertical straightness error 

D.  Measurement of pitch error (EAY) 

The principle underlying the measurement of pitch error 
is based on the application of the measurement method and 
data from the aforementioned positioning error (EYYd), to 
which we add an extension bar (L) in the vertical direction 
before it is used to measure the error in positioning, as shown 

in Fig. 5. The measurement result sY  can be expressed 

using the following equation: 

 sY  = EYYd + L*EAY  

such that, under the condition of this measurement, the amount 
of pitch error EAY  is  

 EAY  = ( sY  - EYYd ) / L  

 

 

Fig. 5.  Measurement of pitch error 

E.   Measurement of roll error (EBY) 

The measurement of roll error is based on the application 
of the measurement method and data from the aforementioned 
vertical straightness error (EZYd), to which we add an 
extension bar (L) in the horizontal direction, as shown in Fig. 
6, before it is used to measure the error in vertical straightness. 
The measurement result sZ  can be expressed using the 

following equation: 

 sZ  = EZYd  + L*EBY  

such that, under the condition of this measurement, the amount 
of roll error EBY  is  

 EBY = ( sZ  -  EZYd ) / L  

 
Fig. 6.  Measurement of roll error 

dd EZYΔZ 

EAY*LEYYΔY ds 

EBY*LEZYΔZ ds 
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F.   Measurement of yaw error (ECY) 

The principle of measuring yaw error is based on the 
application of the measurement method and data from the 
aforementioned error in horizontal straightness (EXYd), to 
which we add an extension bar (L) in the horizontal direction, 
as shown in Fig. 7, before it is used to measure error in 
horizontal straightness. The measurement result dX  can be 

expressed using the following equation: 

 dX  = EXYd  + L*ECY 　 

such that, under the condition of this measurement, the amount 
of yaw error ECY  is  

 ECY  = ( dX  - EXYd ) / L   

 

Fig. 7.  Measurement of yaw error 

Because the location (perpendicularity) error between the 
two linear axes is rotational error, the measurement method is 
independent of the location of the measurement device, 
referring to the ISO230 standard directly [13]. 

 

IV. KINEMATIC PARAMETER-INDEPENDENT ERROR MODELS  

A.   Defining Geometric Error for linear Axes 

Definitions in ISO230 relate to standards for error 
inspection related to CNC machine tools, including the 
definition of geometric error and methods for testing. A single 
linear motion axis is defined as possessing six types of 
component error (three translational and three rotational), and 
location (perpendicularity) error between two axes of linear 
motion. According to the above definitions, a three-axis 
machine tool would be susceptible to 21 geometric errors. 

To describe the overall geometric error of three-axis 
machine tools, it is necessary to establish a geometric error 
model for the target machine. Assuming that the structure of 
the machine tool is a rigid body, then a 4x4 HTM could be 
used to describe the relationship between each kinematic and 
servo control axis. The error model could scroll through the 
HTM of individual kinematic and driver components to 
determine the order of products, according to the kinematic 
chain of the machine [3]. 

Fig. 8 displays a case study of the X-axis linear motion 
slide. The geometric error model for kinematic parameters, 
location error, and component error in an X-axis linear slide is 
shown in the formula below, illustrating the relationship of the 
x coordinate system with respect to the reference coordinate 

system x
rT . 










































 





















1000

EZX1EAXEBX

EYXEAX1ECX

EXXXEBXECX1

1000

0100

001COX

00COX1

1000

Z100

Y010

X001

T

m

x

x

x

x
r

 

where xxx ZYX ,, are the constant offset positioned at the x 

home with respect to the reference coordinate system in the 
x,y,z direction, respectively, or the kinematic parameter for 
the X-axes linear slide. COX is the location error between the 
linear X axis and an ideal linear axis (in this example, Y-axis 
of the reference coordinate system) which causes a small 
angular rotation between the two coordinate systems in the Z 
axial direction. EXX, EYX, EZX, EAX, EBX and ECX are the 
six component errors for the linear X axis, and mX is the 

servo-controlled position of the X-axis slide. 

The order of products for the kinematic parameter 
matrix, the location (perpendicularity) error matrix, and the 
6D component error matrix in the above formula depend upon 
the pattern arrangement in the kinematic chain of the linear X 
axis. First, the third HTM represents the 6D component error 
matrix for the X axis linear slide. Second, assuming that when 
the X-axis slide moves to the home position the Z-axis of the 
X coordinate system is identical to the Z-axis of the reference 
coordinate system, then perpendicular error COX exists 
between the ideal motion axis (the X-axis of the X coordinate 
system) and the Y-axis of the reference coordinate system, as 
does the perpendicular error matrix. Finally, when the slide on 
the X axis moves to the X home position, the X axis slide 
having the kinematic parameter matrix for the origin 
coordinate offsets.  

ECY*LEXYΔX dd 
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Fig. 8. Definition of linear geometric error along the X axis 

B. Geometric Error Modeling 

For an ideal three-axis machine tool, each position of the  
tool ( www ZYX ,, ) and orientation of the tool ( www KJI ,, ) 

on the workpiece coordinate system has a corresponding drive 
position to cut the required work pieces, and tool orientation 
can only be defined in the (0,0,1) direction. Figure 9 presents a 
common three-axis machine tool (Coordinate Measuring 
Machine, CMM) and the definition of its coordinating system. 
The kinematic chain of the machine is linked by several 
components and three linear motion axes. One end of the 
chain is a tool holder. The spindle block is mounted on the Z-
slide, which moves vertically using a prismatic joint. The Z-
slide is bolted to the X-slide, which is stacked on the Y-slide, 
making the three linear axes (x,y,z) perpendicular to each 
other. The Y-slide is then moved on the bed with a prismatic 
joint. Finally, according to the definition of ISO230 and the 
kinematic chain sequence of this machine, the location 
(perpendicularity) errors are COX, BOZ, and AOZ. 

 

Fig. 9. Three-axis machine tools 

Based on Fig. 9, the spatial relationship between the tool 
coordinate system and the reference coordinate system can be 
obtained using the formula below. 

 t
h

h
z

z
x

x
y

y
r

t
r TTTTTT   

The spatial relationship between the workpiece 
coordinate system and the reference coordinate system can be 
obtained using the formula below. 

 w
wo

wo
r

w
r TTT   

Figure 10 illustrates that, with an ideal machine, the tool 
coordinate system should provide identical points as those 
provided by workpiece coordinate system. However, actual 
machines cause geometric errors, so the position of the origin 
of the tool coordinate system with respect to the reference 
coordinate system ][ ttt ZYXtP  is obtained using the 

formula below. 

 

Fig. 10. Overall error at the tool end 

 T
t

rT 1000T1 ][][ tP  

The origin position of the workpiece coordinate system 
with respect to the reference coordinate system 

][ www ZYXwP , can be obtained using the formula 

below. 

 T
w

rT 1000T1 ][][ wP   

Now, the position error for the tool coordinate system 
with respect to the workpiece coordinate system in the 
reference coordinate system ),,( rrr ZYX re,P can be 

obtained using the formula below.  

 wtre, PPP   

Orientation error in the reference coordinate system 
),,( rrr KJI re,O  can be obtained using the three formulas 

listed below. 
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 T
idealw

r
w

rT 0100TT0 ][)(][ ,wO  

 T
idealt

r
t

rT 0100TT0 ][)(][ ,tO  

 wte,r OOO   

where idealw
rT ,  and idealt

rT ,  are the HTM for the workpiece 

coordinate system and tool coordinate system with respect to 

the reference coordinate system for w
rT and t

rT , respectively, 

when geometric errors are not considered (the ideal machine). 

Using the assumption of small-angle approximation and 
that second-order errors are negligible, a consolidation of 
geometric errors for the error model used with this three-axis 
machine tool is displayed in Table 1. The overall error in the 
direction of X, rX , is the product of each error multiplied by 

the error gain of each error. For example, the error 

contribution in the direction of X in ECX is –ECX* zY . This 

table, which is considered a geometric error sensitivity 
analysis table, indicates that translational errors (EXX, EYX, 
EZX, EXY, EYY, EZY, EXZ, EYZ, and EZZ) are machine 
kinematic parameter-independent, while rotational errors 
(EAX, EBX, ECX, EAY, EBY, ECY, EAZ, EBZ, ECZ, COX, 
AOZ, and BOZ) are machine kinematic parameter-dependent. 

 

C.   Error Model and Compensation Model Using the 
Combined Measurement Method 

To apply the measurement devices and principles 
described above to three-axis machine tools, we installed an 
indicator (or probe) on the tool holder on the spindle of the 
machine in Fig. 9 to provide individual measurements of the 
six component errors involved in linear motion axis and the 
location (perpendicular) error [13] for the three linear axes. 
For example, when the 6D component errors were measured 
for linear motion along the Y axis, we first located the gauge 
block and straight gauge in the middle position of the X stroke, 
which were set as the zero error position, and then installed an 
indicator (probe) on the tool holder on the spindle of the 
machine to perform the measurements. At this point, because 
the measurement position of the device would be susceptible 
to Abbe’s error, the 6D measurement results along the Y axis 
included all errors created by the kinematic parameters of the 
machine. Next, we measured the component errors for the 
other two linear motion axes according to the principles 
described above. 

Applying the new measurement method to the three-axis 
CNC machine tool enabled us to simplify the original 
geometric error model containing kinematic parameters shown 
in Table 1 to the kinematic parameter-independent Table 2. 
For instance, when measuring the six component errors in 
linear motion along the X axis, there were three contributors to 
overall error rZ (EZX, EAX and EBX), the contributing   

factors of which were 1, zz XY , . Under the premise that the 

machine possesses positioning repeatability, we can assume 
that when the slide on the X axis is located at a specified 
position, the zz XY , kinematic parameter will be a constant. 

Due to the fact that the indicator (probe) was installed at the 
tool end of the spindle, the error contribution of EAX* zY  and 

EBX* )( zX is reflected in EZX. For this reason, these two 

kinematic parameters can be set to zero, and their other errors 
can be simplified in this manner.  

As illustrated in Table 2, all nine translational errors 
(EXX, EYX, EZX, EXY, EYY, EZY, EXZ, EYZ and EZZ) 
contributed to overall error at the tool end, but only five of the 
rotational errors (EAX, EBX, EAY, EBY and ECY) contributed, 
while four (ECX, EAZ, EBZ and ECZ) did not. Therefore, only 
17 (21-4) geometric errors needed to be measured in this 
model, as shown in Table 2. 

Constructing a kinematic parameter-independent three-
axis geometric error model and measurement method based on 
the above measuring method is both practical and accurate. 
Furthermore, compensating for persistent geometric errors can 
also be accomplished using this geometric error model to 
establish a compensation model for three-axis geometric errors. 
When the three-axis machine tool is moved to u(x,y,z) 
positions and tool end spatial errors are du, the compensation 
applied by the kinematic parameter-independent error 
compensation model is –du. Finally, the machine axis errors 
for x,y, and z motion can be corrected through a controller, 
and returned to their ideal position at cu . 

 
TABLE 1. Error model and sensitivity analysis 

△Xr △Yr △Zr △Ir △Jr △Kr

Error Error gain 
EXX 1 0 0 0 0 0
EYX 0 1 0 0 0 0
EZX 0 0 1 0 0 0
EAX 0 -Zh-Zt-Zm-Zz +Yz 0 -1 0
EBX +Zh+Zt+Zm+Zz 0 -Xz 1 0 0
ECX -Yz +Xz 0 0 0 0
EXY 1 0 0 0 0 0
EYY 0 1 0 0 0 0
EZY 0 0 1 0 0 0
EAY 0 -Zh-Zt-Zm-Zz-

Zx
+Yz+Yx 0 -1 0 

EBY +Zh+Zt+Zm+Zz+Zx 0 -Xz-Xm-Xx 1 0 0
ECY -Yz +Xz+Xm+Xx 0 0 0 0
EXZ 1 0 0 0 0 0
EYZ 0 1 0 0 0 0
EZZ 0 0 1 0 0 0
EAZ 0 -Zh-Zt 0 0 -1 0
EBZ +Zh+Zt 0 0 1 0 0
ECZ 0 0 0 0 0 0
COX -Yz +Xz+Xm 0 0 0 0
AOZ 0 -Zh-Zt-Zm 0 0 -1 0
BOZ +Zh+Zt+Zm 0 0 1 0 0
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TABLE 2. Error model with kinematic parameter-independence 

  △Xr △Yr △Zr △Ir △Jr △Kr

Error Error Gain 
EXX 1 0 0 0 0 0
EYX 0 1 0 0 0 0
EZX 0 0 1 0 0 0
EAX 0 -Zm 0 0 -1 0
EBX Zm 0 0 1 0 0
ECX 0 0 0 0 0 0
EXY 1 0 0 0 0 0
EYY 0 1 0 0 0 0
EZY 0 0 1 0 0 0
EAY 0 -Zm 0 0 -1 0
EBY Zm 0 -Xm 1 0 0
ECY 0 Xm 0 0 0 0
EXZ 1 0 0 0 0 0
EYZ 0 1 0 0 0 0
EZZ 0 0 1 0 0 0
EAZ 0 0 0 0 -1 0
EBZ 0 0 0 1 0 0
ECZ 0 0 0 0 0 0
COX 0 Xm 0 0 0 0
AOZ 0 -Zm 0 0 -1 0
BOZ Zm 0 0 1 0 0

 

V. Conclusion  

Three-axis geometric error models derived using 
traditional methods all set the machine reference coordinate 
systems at a fixed point on the base of the machine and 
depend on the machine kinematic chain to derive a kinematic 
parameter-dependent model. For practical applications, this 
dependence makes accurate kinematic parameters impossible 
to obtain, the operation of  measurement devices is 
inconvenient, and overall error is overvalued. For this reason, 
this paper created a measurement method integrating 
“modeling, measurement, and compensation for geometric 
error model of three-axis machine tools using a kinematic 
parameter-independent” technique. This technique, integrating 
simple measurement methods, was used to construct a 
corresponding three-axis geometric error model and 
compensation model. The geometric error model is machine 
kinematic parameter-independent, making it a practical, 
convenient, and accurate method of measurement. 
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